

HomeWork 7/8：

Face Recognition

Deep Learning for Advance Robotics Perception

Author: Supervisor:
Aayush Shah Dr. Carlos Morato
Sanjuksha Nirgude
Dharini Dutia
Harsh Pathak
Namrita Madhusoodanan
Kevin Ducharme

November 6, 2017

Description of files in the submission:
1. Vid2Img.m- Matlab script to extract images from videos.
2. create_dataset.py- Python script for creating the test and validation folders. The image

files are shuffled in a random order and placed into these folders according to the
specified train-validation split ratio.

3. CNN1.py- Python code(Keras+Tensorflow) defines the model of the best configuration,
along with the code to train and test the model.

4. visualizing.py- Python code to visualize the filters of the developed model, given an input
test image.

5. model_predict_face.ipynb- Code to view prediction labels for fresh test images.

Introduction
In this homework, we are using videos taken by six members of our group with 5 different
backgrounds, and creating an image dataset out of that. Having parsed the imaged from a video
we got a dataset with high correlation. Our challenge is to apply various techniques learned in
class to make our dataset more efficient for a better learning with low bias and low variance.
Moreover, having taken all the videos from cameras with different specifications. We, had to
make our pre-processing unit more robust to remove extra images and use images with different
resolutions.

In this assignment, for image classification we are using Convolutional Neural Networks. Since
we have a small dataset with has high correlation, hence we incorporated some techniques to
reduce overfitting. We are using a very small convnet with few layers and few filters per layer,
alongside data augmentation and dropout.

Preprocessing and Data Handling:
1. First, we collect videos of all our group members in 5 different backgrounds, and extract

approximately 1800 images per video. This is done using the matlab script Vid2Img.m.
This results in a dataset consisting of around 9000 images per person. The images are
resized to 108*192 for easier transfer of data.

2. Next, a train and validation folder is created from the dataset. For this purpose, a python
script “create_dataset.py”, is run. This does the job of splitting the dataset into train and
validation folders in a random fashion, which is essential for classification. The script is
included in the submission.

Methodology :

We built a small Convolutional Neural Network with few filters per layer. Since, our dataset is
small and highly correlated we used Data Augmentation in the data-preprocessing module of
the assignment to reduce overfitting. We use “ImageDataGernerator”, which is an in-built
function in keras. This function is used to preprocess the images, convert them to tensors and
augment the data. Further, our training dataset consists of approximately 5000-6000 images of
each person in the group. The validation dataset consists of 3000 images of each person. In
data augmentation the image is rotated, shifted, rescaled, sheared, zoomed and flipped to
create a varied dataset.

Layer Topology:
1. The first trial consisted of a model with the following summary:

Layer (type) Output Shape Param #
===
conv2d_1 (Conv2D) (None, 148, 148, 32) 896

activation_1 (Activation) (None, 148, 148, 32) 0

max_pooling2d_1 (MaxPooling2 (None, 74, 74, 32) 0

conv2d_2 (Conv2D) (None, 72, 72, 32) 9248

activation_2 (Activation) (None, 72, 72, 32) 0

max_pooling2d_2 (MaxPooling2 (None, 36, 36, 32) 0

conv2d_3 (Conv2D) (None, 34, 34, 64) 18496

activation_3 (Activation) (None, 34, 34, 64) 0

max_pooling2d_3 (MaxPooling2 (None, 17, 17, 64) 0

flatten_1 (Flatten) (None, 18496) 0

dense_1 (Dense) (None, 64) 1183808

activation_4 (Activation) (None, 64) 0

dropout_1 (Dropout) (None, 64) 0

dense_2 (Dense) (None, 6) 390

activation_5 (Activation) (None, 6) 0

The results obtained were:
Epoch 1/50
125/125 [==============================] - 264s - loss: 0.8883 - acc: 0.6930 - val_loss:
0.1239 - val_acc: 0.9762

Epoch 2/50
125/125 [==============================] - 124s - loss: 0.4191 - acc: 0.8815 - val_loss:
0.0876 - val_acc: 0.9675

Epoch 3/50
125/125 [==============================] - 127s - loss: 0.2949 - acc: 0.9185 - val_loss:
0.0180 - val_acc: 0.9975

Epoch 4/50
125/125 [==============================] - 124s - loss: 0.2154 - acc: 0.9435 - val_loss:
0.0150 - val_acc: 0.9962

Epoch 5/50
125/125 [==============================] - 121s - loss: 0.1726 - acc: 0.9520 - val_loss:
7.6551e-04 - val_acc: 1.0000

Since a validation accuracy of 1 was achieved, it can be concluded that only 6 epochs are
necessary.

This model used the optimizer 'adam'.

2. The second trial used the same model architecture with the optimizer 'rmsprop'. These were the
results obtained:
Epoch 1/6
125/125 [==============================] - 85s - loss: 1.0477 - acc: 0.6255 - val_loss:
0.4749 - val_acc: 0.8350
Epoch 2/6
125/125 [==============================] - 80s - loss: 0.4893 - acc: 0.8530 - val_loss:
0.0980 - val_acc: 0.9900
Epoch 3/6

125/125 [==============================] - 80s - loss: 0.2792 - acc: 0.9150 - val_loss:
0.0309 - val_acc: 0.9838
Epoch 4/6
125/125 [==============================] - 78s - loss: 0.2049 - acc: 0.9405 - val_loss:
0.0106 - val_acc: 0.9988
Epoch 5/6
125/125 [==============================] - 76s - loss: 0.1367 - acc: 0.9510 - val_loss:
0.0061 - val_acc: 0.9988
Epoch 6/6
125/125 [==============================] - 78s - loss: 0.1120 - acc: 0.9630 - val_loss:
0.0093 - val_acc: 0.9962

This model trains faster, has less loss and more accuracy during training, and seems to do a better
job of countering overfitting.

3. For the model above, inputs were given to visualize the filters. The results were-

Input Image:

Visualization for conv2d_1

Visualization for conv2d_2

Visualization for conv2d_3

4. The model was also tested using completely new images in the validation folder, which were
extracted from new videos.These new images are never seen by the model during training.
The results were-
Epoch 6/6

125/125 [==============================] - 57s - loss: 0.1202 - acc: 0.9655 - val_loss:
0.0014 - val_acc: 0.9988

Results for Fresh Images which were not the part of data set :
Our Model was able to correctly classify 12/17 ~ fresh images that were completely different
from training data.

1/1 [==============================] - 0s
True Label : hpathak

1/1 [==============================] - 0s
True Label : ashah

1/1 [==============================] - 0s
True Label : hpathak

1/1 [==============================] - 0s
True Label : kducharme

1/1 [==============================] - 0s
True Label : ddutia

1/1 [==============================] - 0s
True Label : snirgude

1/1 [==============================] - 0s
True Label : snirgude

1/1 [==============================] - 0s
True label : namrita

1/1 [==============================] - 0s
True Label : snirgude

1/1 [==============================] - 0s
True Label : snirgude

1/1 [==============================] - 0s
True Label : snirgude

1/1 [==============================] - 0s
True Label : snirgude

1/1 [==============================] - 0s
True Label : snirgude

1/1 [==============================] - 0s
True Label : hpathak

1/1 [==============================] - 0s
True label : ddutia

1/1 [==============================] - 0s
True Label : ashah

True Label : namrita

Conclusions:

The model developed gives a validation accuracy of about 99.8%. This high value is achieved
because the data used for training and validation are obtained from videos,resulting in highly
correlated data.

.

References :
1. https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.h

tml

https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html

