Sanjuksha Nirgude

snirgude@wpi.edu linkedin.com/in/sanjuksha/ Santa Clara, CA, USA. 95051 +1-571-314-8588 sanjuksha.github.io github.com/sanjuksha

INTRODUCTION

Self-driven and ambitious Robotics Engineer working in an interdisciplinary team on real-world robotics applications. Skillfully crafting intricate algorithms and high-quality production code in fast-paced, collaborative environments. Looking forward to working in a role and environment which brings out the best in me.

TECHNICAL SKILLS

Languages: C++, Python, MATLAB, HTML

Softwares: ROS, Linux, Git, Gazebo, Rviz, Latex, Doxygen, SolidWorks, MoveIt, LMS

Libraries & packages: PyTorch, OpenCV, TensorFlow, Keras, GTest

Courses & Concepts: Localization, Path Planning, Perception, Algorithms, Mobile Robotics, Robot Controls & Dynamics, Swarm Intelligence, AI, OOP, SLAM, CARLA, Behavior Trees, Autonomous Driving, Obstacle Avoidance, Navigation, Data Structures, RabbitMQ, Sensor Fusion, State Machines, Triaging, Debugging, PubSub.

EDUCATION

Worcester Polytechnic Institute (WPI)

Master of Science in Robotics Engineering

GPA: 4.0/4.0

May 2019

University of Pune (UoP)

Pune, India

Bachelor of Mechanical Engineering

Percentage: 71/100

June 2016

WORK EXPERIENCE

ClearPath Inc Simulation Developer-Robotics

Feb 2023 - July 2023

- Developed simulations of robots in Gazebo using AWS EC2 instances for real-world applications.
- Imported robot STL models into gazebo simulation, enabling dynamic parameter changes to modify robot functionality.
- Led the planning and implementation of a new pallet pick-and-place feature for a project.
- Delivered presentations to executives, effectively communicating project progress and feature implementation details.
- Acted as a point of contact and triage person for the team, addressing issues from other teams and stakeholders promptly and creating tickets for further team attention.
- Collaborated with cross-functional teams to troubleshoot and resolve technical challenges, ensuring seamless project execution and delivery.

Open Robotics Software Engineer-Robotics

Aug 2022 - Dec, 2022

- Successfully verified and executed build instructions and tutorials for ROS/Gazebo (garden release), demonstrating a deep understanding of Gazebo package architecture.
- Implemented bug fixes in Gazebo rendering packages regarding lens flare from wide-angle camera, as a part of the NASA VIPER team.
- Conducted thorough code reviews and comprehensive testing of contributions from individual open-source contributors to gazebosim, ensuring code quality and reliability.

Symbotic LLC Advanced Controls Engineer

Aug 2019 - Aug 2022

- Spearheaded projects for automated mobile robots, specializing in case under pick ability.
- Developed advanced tools for real-time issue diagnosis and troubleshooting by analyzing sensor data from AMR.
- Implemented and tested improvements to existing features, considering future scalability and expansion of robot capabilities.
- Optimized code scalability to handle simulations with over 100 robots simultaneously, addressing robot peculiarities.
- Enhanced robot performance by identifying and resolving limitations in specific scenarios.
- Collaborated with multiple teams to diagnose and solve localization problems, ensuring reliable results.
- Contributed to the development and deployment of pick/place algorithms, utilizing both conventional and AI-based control strategies.
- Collaborated with the test team in a test-driven environment to validate algorithms.
- Programmed, unit tested, debugged, and improved pick/place ability through troubleshooting and optimization.

Waypoint Robotics Inc Robotics Intern

- Aug, 2018 Dec, 2018
- Assembled an Autonomous Mobile Robot (AMR) and programmed its behavior utilizing LIDAR data and digital IO for bystander feedback regarding robot intentions.
- Enhanced the robot's programming environment by implementing sensor fusion and motion planning, introducing novel features to the product's graphical user interface (GUI).
- Integrated a detection deep learning algorithm on live video input from a mobile robot's camera, pioneering a motion algorithm that responds to this input effectively.

Cere Labs Pvt Ltd Machine Learning Intern

March, 2016 – June, 2016

- Applied Reinforcement Learning (RL) techniques, particularly the Q-learning algorithm, to autonomously guide a crawling robot toward a wall using ultrasonic sensor data and Raspberry Pi controller.
- Documented the comprehensive process of constructing the robot and executing the reinforcement learning algorithm, showcasing expertise in technical communication, and published a series of informative blog posts on the company's platform.

PROJECTS (URL)

Atlas's Escape Humanoid Robotics

Jan - May, 2019

- Developed Atlas humanoid robot's behavior by integrating perception, locomotion, and manipulation to autonomously detect and approach doors in Gazebo using ROS and C++.
- Utilized BGR images and LiDAR point cloud data for accurate door sensing and recognition.

Automated Cinematography using an UAV Motion Planning

Aug - Dec, 2018

- Employed a hector quadrotor to execute a comprehensive 360-degree aerial cinematography view of a human subject within a simulated environment.
- Implemented a ROS-based local RRT* path planner on a quadrotor, ensuring obstacle avoidance, and captured environment images using RViz for precise path validation.

Facial Key-point Detection Computer Vision Nanodegree (Udacity)

May - Aug, 2018

• Designed CNN for precise detection of 68 facial key points, utilizing Haar Cascade for initial face detection and PyTorch for 3-layered feature extraction.

Fuzzy Logic Controller for Indoor Navigation of Mobile Robots Robot Control Jan – May, 2018

- Designed and implemented fuzzy logic controller (TFLC & OAFLC), utilizing Kinect-generated stereo-vision, point-cloud, and laser-scan data from RViz on the TurtleBot2 platform.
- Employed the Takagi-Sugeno-Kang fuzzy inference technique and Centroid defuzzification methods to realize precise implementation of the controllers, enhancing navigation accuracy and performance.

Collective transport of Concave objects using a robot swarm Swarm Intelligence Jan - May, 2018

- Devised and executed an innovative occlusion-based collective transport strategy using Khepera IV robots in ARGoS, transforming concave objects to convex by strategic filling in C++.
- Achieved efficient object transport without prior knowledge or explicit inter-robot communication, highlighting the strategy's autonomy and adaptability.

Detection, Recognition, Pose Estimation of Objects Deep Learning for Perception Aug—Dec, 2017

- Achieved 98% accuracy in object recognition and an average of 85% in angle estimation on the TableTop dataset.
- Successfully processed images from 8 distinct angles and 2 varied heights for comprehensive results.

VOLUNTEER EXPERIENCE

Co-Organizer Women in Robotics Boston Chapter Organizer Women in Robotics Bay Area

 $March,\,2020\,-\,June,\,2022$

July, 2023 – Present

- Women in Robotics is a global community to which I contribute as an organizer for community events.
- Organizing events ranging from interviews of inspiring women working in the field to technical events digging to the core of various robotics concepts.

Robotics Outreach Program

March, 2015 - Dec, 2016

• Organized workshops in over 40 middle schools in India to share knowledge of robotics in order to promote robotics engineering as a career prospect for students.

ADDITIONAL PROJECTS (TEAM SIZE, FRAMEWORK, LANGUAGES)

Face Recognition using neural networks (3, Keras, Python)	Aug, $2017 - Dec$, 2017
Teleoperation of a robotic arm using IMU (5,Arduino, Python)	Aug, $2017 - Dec$, 2017
Robot Learning From Demonstration via MoCap (5, Trinia, Python)	Jan, 2018 - March, 2018
Image Captioning using neural networks (Udacity) (1, Python)	June, $2018 - Aug, 2018$
Landmark detection and Robot Tracking (Udacity) (1, Python)	June, $2018 - \text{Aug}, 2018$